有価証券報告書 抜粋 ドキュメント番号: S100RWVF (EDINETへの外部リンク)
サスメド株式会社 事業の内容 (2023年6月期)
(1) ビジネスモデルの概要
当社は、「ICT(※1)の活用によって持続可能な医療サービスを社会に提供し続けること」をミッションに、医薬品、医療機器に次ぐ第三の治療法として注目されている「デジタル治療(Digital Therapeutics、以下「DTx」といいます。)」の開発を中心として事業展開を行っております。また、DTxの開発にあたって独自に構築した臨床試験システムを汎用化し、製薬企業、学術研究機関、医療機関、医薬品開発業務受託機関(Contract Research Organization、以下「CRO」といいます。)等の第三者へ提供することで業界全体での創薬プロセスの効率化を、加えて、世の中に膨大に蓄積されている医療データの利活用を目的として開発した機械学習による自動分析システムを製薬企業、学術研究機関等へ提供することで効果的・効率的な医療サービスの実現を目指しております。当社のセグメントは①治療用アプリ開発を行う「DTxプロダクト事業」、②汎用臨床試験システムと機械学習自動分析システム並びにこれらシステムを活用したDTx開発支援から構成される「DTxプラットフォーム事業」の2つとなります。
なお、「DTxプロダクト事業」のうち、不眠障害治療用アプリについては、2023年2月に厚生労働省より医療機器製造販売承認を取得しております。
(ビジネスモデルイメージ図)
(2) 医薬産業を取り巻く現状と課題
2015年9月の国連サミットにおいてSDGs: Sustainable Development Goalsが採択され、国連加盟193か国が2016年から2030年の15年間で達成するための目標が掲げられました。SDGsの目標の中の1つに「すべての人に健康と福祉を」という項目が挙げられており、「持続可能な医療」が世界的にも求められております。一方で国内に目を向けると、2017年度の医療給付費は39.4兆円と前年度の38.8兆円から1.6%増加し、GDPの7.2%に相当する規模まで拡大しております(出典:国立社会保障・人口問題研究所「2017年度 社会保障費用統計」)。この医療費の伸びは高齢化の進行によって医療を必要とする人口が増加したこと及び長期の療養が必要になる慢性疾患が増加したことに加えて、高額な医薬品の普及など医療の高度化による影響も強く受けております。
慢性疾患への対応では、DTxと呼ばれる新しい治療法が、コストを抑えながら適切な医療を患者に提供する手段として注目されております。DTxは、スマートフォンのアプリケーションなどの形態をした、ソフトウェアによる治療手段で、規制当局の承認を得た科学的根拠に基づく医療機器である、という点で一般的なヘルスケアアプリケーションとは異なります。DTxでは、患者の医療へのアクセスが通常の医療と比べて容易になり、加えて医療機関外での活動データの蓄積が可能となることから、「治療中断率が高い」「適切/適時/適量の治療介入が行えず、結果として療養が長期にわたる」という慢性疾患特有の課題解決につながることが期待されておりますが、ようやく導入期に差し掛かった段階にあります。
(治療用アプリの立ち位置)
(治療用アプリと一般的なヘルスケアアプリの違い)
治療用アプリの開発では通常の医薬品や医療機器の開発プロセスで求められる非臨床試験が省略できるほか、医療機器承認後の製造過程においても、ソフトウェア自体が製品となるため製造設備が不要である、工程管理や品質管理が比較的容易であるなど、開発コスト、開発期間、販売後の収益性といった多くの面で大きくリスクが低減できます。
(治療用アプリ開発のプロセス:コストと期間)
医療の高度化に関しては、近年、新しい医薬品・医療機器の開発コストが高騰し続けており、グローバルの大手製薬企業から収集したデータによる推計に基づいて医薬品の開発コストを一剤当たりで比較すると、1990年代に3億1千8百万ドルだったものが2010年には17億7千8百万ドルと5倍以上に膨れ上がっております(出典:医薬産業政策研究所「製薬産業を取り巻く現状と課題」(2014))。そして、このような開発コストの高騰は、高額な薬価に繋がり、最終的には社会保障費の増加を引き起こします。そうした中、厚生労働省を中心に後発医薬品の使用が継続的に推進されておりますが、後発医薬品の普及は社会保障費の抑制につながる反面、新薬の開発に対する民間企業のインセンティブを減少させる可能性もあります。製薬産業については、2021年時点での売上上位100品目の医薬品に関して特許発明者の所在地を創出国として定義した場合、日本の新薬創出能力はアメリカ、スイス、イギリスに次いで世界第4位と高く(出典:医薬産業政策研究所「世界売上高上位医薬品の創出企業の国籍 -2021年の動向-」(2022))、その国際競争力の維持は我が国にとって最重要課題の1つとなっております。新しい医薬品・医療機器を開発する際には、臨床試験・治験といった臨床開発が行われますが、労働集約的で煩雑なプロセスやそれに伴う実施費用の高額化が開発コストの高騰に直結する課題とされており、近年は、臨床試験データをリモートで取得する「リモート治験」が欧米の製薬企業を中心に取り組まれております。リモート治験においても、被験者の識別(なりすまし防止)、医療データの安全な取得・保管・利用など、通常の臨床試験とは異なる課題があり、解決のための手段が求められております。
日本では、新薬開発前のシーズ発掘、新薬開発プロセスや市販後調査の効率化を目的として、リアルワールドデータ(以下、「RWD」といいます。)(※2)と呼ばれるレセプト(※3)や電子カルテなどの匿名化された患者単位の医療データを分析する専門部署を2015年ごろから製薬企業が立ち上げ、それに呼応する形で2016年に厚生労働省がレセプトデータベースを公開、2018年には独立行政法人医薬品医療機器総合機構(以下、「PMDA」といいます。)がMID-NET(※4)の本格運用を開始するなど、既に海外では活用が進んでいるRWDを我が国でも活用しようという動きになっております。新薬開発に関しても、医薬品・医療機器の開発にRWDの活用を可能とするためのガイドラインとして「承認申請等におけるレジストリの活用に関する基本的考え方」や「レジストリデータを承認申請等に利用する場合の信頼性担保のための留意点」が厚生労働省より発出されています。このようなRWDの分析・活用には、分析担当者が日常使用しているような表計算ソフトウェアでは機能・容量面で不十分であり、巨大なデータセットでも取扱可能な統計分析専用のツールやAI(人工知能)機能を組み込んだソフトウェアなどが使用されておりますが、分析結果の根拠が不明確など、医療業界で求められる水準への対応が難しいことや、分析結果の利用に際して後処理に多大な工数を要することが課題となっております。
(3) 具体的な製品又はサービスの特徴
当社は、前項で述べてきた「医療に対する国家歳出の増大」という課題に対して、「治療用アプリ開発」による新しい治療法の提案、「汎用臨床試験システム」の提供による創薬プロセスの効率化による開発コストの適正化、「機械学習自動分析システム」の提供による医療データの活用による医薬産業のバリューチェーン全体の効率化という大きく3つの方向性から課題を解消すべく事業活動を行っております。①「DTxプロダクト事業」セグメント
〔治療用アプリ開発〕
当社は、アンメットメディカルニーズ(※5)への解決策の提案を目指して、慢性疾患や認知行動療法(※6)、運動療法(※7)が有効とされる疾病に対する複数のDTxの開発を行っております。本書提出日現在における開発中のパイプライン(※8)は以下のようになっており、中でも不眠障害治療用アプリの開発が最も進捗しております。(当社の治療用アプリの開発パイプライン)
厚生労働省の調査によると、日本人の5人に1人が「睡眠で休養が取れていない」「何らかの不眠がある」と調査に回答しております(出典:厚生労働省「e-ヘルスネット」不眠症)。また、睡眠障害による日本の経済損失は年間880~1,380億ドルに上るという試算もある(出典:RAND Corporation 「RAND Health Quarterly, 2017; 6(4):11」)ため、睡眠障害の治療は医療経済的観点での喫緊の課題となっております。睡眠障害に対する治療法としては、米国国立衛生研究所(NIH)の指針では認知行動療法が第一選択とされておりますが、日本においてはまだ睡眠障害に対する認知行動療法に保険診療が適用されておらず、人的リソースに限りのある医療現場にとっては負担が大きい治療法となるため、やむを得ず薬物療法が選択されているケースが多いのが実状となっております。また、薬物療法以外の選択肢が少ないため、日本は睡眠薬の処方量が先進国の中でも多く、厚生労働省が多剤処方(※9)に対して保険点数を減算するなどにより処方減に取り組んでおりますが結果として中小規模の医療機関の経営に大きな影響を及ぼしております。
このような外部環境の中、当社は、ICTを活用した治療用アプリで不眠症に対する認知行動療法を確立することを目指しております。不眠症に対する認知行動療法は、治療中の改善効果、治療後の改善効果の持続性の両面で、睡眠薬を使用した薬物療法よりも優れていることが実証されておりますが(Jacobs et al., 2004, Arch Intern Med)、上記のとおり、保険診療が適用されていないこと、人的リソースに限りのある医療現場にとっては負担が大きいことが医療機関での治療法の採用に際して阻害要因となっております。当社は、医療現場での人的リソースの不足を解決するために、普及が進んでいるスマートフォンのアプリケーションを活用し、薬物療法から認知行動療法へのシフトを推進することで、睡眠薬の処方量の削減及び適正使用につなげ、社会的課題を解決するサービスを展開してまいります。事業推進上、対処すべき課題としては、治験による医療機器承認と、保険収載及び収益確保が可能となる保険点数の実現が挙げられます。
(治療用アプリでの認知行動療法の提供)
2016年9月より、当社が開発を行っている不眠障害治療用アプリの治験を開始しました。治験の実施によって本アプリによる不眠症治療効果並びに安全性を確認することができ、その結果をもとにPMDAと今後の臨床開発の方針について議論した上で2021年の5月から11月まで検証的試験(※10)を実施いたしました。検証的試験の結果、主要エンドポイントを達成し、2023年2月に、厚生労働省より医療機器製造販売承認を取得しております。
現在、保険収載(※11)に向けて、厚生労働省医療機器審査部・経済課を始めとする関係機関との協議を進めております。
上市後の販売戦略については、製薬企業等と、彼らが保有するMR(※12)を通じた販売ネットワークの活用を目的に業務提携の議論を行い、2021年12月に塩野義製薬株式会社(本社:大阪市中央区、以下「塩野義製薬」といいます。)との間で不眠障害治療用アプリに関する販売提携契約を締結しております。また、医師向けには一般社団法人日本睡眠学会で臨床試験の成果に関する解説並びにアプリケーションを使用した認知行動療法の実施に関する啓蒙を代表取締役社長の上野を中心に行い、潜在患者を含む一般消費者向けには睡眠薬を使用しない不眠症の治療に関する疾患啓発を塩野義製薬と共同で行っていくことを検討しております。
不眠障害治療用アプリ以外のパイプラインとしては、乳がん患者向けの運動療法、「人生会議」という愛称でも知られるアドバンス・ケア・プランニング(以下、「ACP」といいます。)を提供する治療用アプリを国立研究開発法人国立がん研究センターと共同で開発しております。
2019年には男女合わせて97,812人が乳がんに罹患しており(出典:国立研究開発法人国立がん研究センターがん情報サービス「がん統計」(全国がん登録))、2020年には男女合わせて14,779人が乳がんによって死亡しています(出典:国立研究開発法人国立がん研究センターがん情報サービス「がん統計」(厚生労働省 人口動態統計))。累積罹患リスクで見ると女性の9人に1人が生涯で乳がんに罹患するとされており、部位別では最も罹患率の高い疾患となっています(出典:国立研究開発法人国立がん研究センターがん対策情報センター「累積罹患リスク」)。
海外の論文では、運動療法の実施によって死亡率が低下することが実証されており(Holmes MD et al. JAMA 2005;293:2479-2486)、日本乳がん学会が発行している「乳がん診療ガイドライン」でも運動療法が推奨されていますが、医療者の時間的リソースに対する負担が大きく、現状は普及に課題を抱えています。
当社は、現状のリソース面での課題を克服しつつ効果の実証された運動療法を患者に提供するために、国立研究開発法人国立がん研究センターと共同で治療用アプリを開発しております。臨床研究では、身体機能や予後(※13)の指標である最高酸素摂取量がアプリでの介入により有意に改善し、その結果について論文を発表いたしました(Ochi et al.,2021, BMJ Support Palliat Care)。現在は、今後の臨床試験に向けてプロトコル(※14)の検討を行っております。
ACPは、人生の最終段階における治療や療養についてあらかじめ考え、患者やその家族と医療者の間で繰り返し話し合い共有する自発的な取り組みのことです。ACPの実施によって早期に緩和ケアに取り組んだ結果、予後の延長やQOL(※15)の改善といった効果が実証されており(Temel JS et al. N Engl J Med. 2010 Aug 19;363(8))、アメリカや台湾では医療保険の適用対象としてACPが実施されています。日本でも、ACPによる早期緩和ケアと意思決定支援による患者の不安・抑うつ症状の改善、加えて死亡直前の抗がん剤投与の減少による医療費の適正化を目的として、国全体でACPの普及啓発に努めています。そのような環境の中、当社は、国立研究開発法人国立がん研究センターとの共同研究において、進行がん患者に対するACP用プログラム医療機器を開発しており、2020年に厚生労働科学研究費「進行がん患者に対する効果的かつ効率的な意思決定支援に向けた研究」に採択されました。現在はPoC取得に向けた探索的試験(※16)を行っており、ACP用プログラム医療機器の提供によって、不適切な治療の中止と患者自身の不安・抑うつ症状の改善を目指しております。
また、慢性腎臓病患者向けに運動療法を提供する治療用アプリを国立大学法人東北大学並びに日本腎臓リハビリテーション学会と共同で開発しております。
慢性腎臓病は心不全、心筋梗塞、脳血管障害などのリスク因子であり、その患者数は日本国内で1,300万人と推計されています(出典:厚生労働省「腎疾患対策検討会報告書~腎疾患患者対策の更なる推進を目指して」2018年7月)。慢性腎臓病患者の発症要因としては糖尿病や高血圧などの生活習慣病が挙げられ、生活習慣の変化とともに患者数が増加しております。また、国内の透析患者数は約33万人、透析治療にかかる医療費は患者1人あたり年間500万円と高額であり、総医療費の4%(約1兆6,000億円)を占めている(出典:ニッセイ基礎研究所「人工透析の増加-慢性腎臓病の早期発見は進むか?」2018年)ことから、日本の社会保障費の適正化を図る上で慢性腎臓病患者の透析治療への移行を食い止めることが喫緊の課題となっております。
慢性腎臓病患者の腎機能の改善もしくは悪化抑制においては、腎臓リハビリテーションが有効であることが示され、日本腎臓リハビリテーション学会が発刊したガイドラインでも推奨されていますが、その普及にあたっては、各医療機関での医師や理学療法士などのリソース不足が課題となっています。
当社は、現状のリソース面での課題を克服しつつ効果が示されている腎臓リハビリテーションを患者に提供することを目指して、治療用アプリを開発しております。
また、2022年11月には杏林製薬株式会社(本社:東京都千代田区、以下「杏林製薬」といいます。)との間で、耳鼻科領域において、耳鳴に対する新たな治療選択肢の提供を目指し、治療用アプリの共同研究開発及び販売に関する契約を締結し、治療用アプリの開発に着手しました。
②「DTxプラットフォーム事業」セグメント
〔汎用臨床試験システム〕
前項で記載した不眠障害治療用アプリの開発過程において獲得したノウハウをベースに、効率的な臨床試験を実施するためのシステム開発を行っております。リクルーティング(※17)の効率化やモニタリング(※18)コストの削減などを通じて医薬品・医療機器の開発コストの適正化が期待できる「リモート治験」が2017年頃から欧米を中心に広がってきていますが、日本では試験データの真正性の確保に課題を残しており、ごく限定的な範囲でのみ実施されている状況です。当社のシステムには、リモート治験における上記の課題を解決するために、被験者として適切な対象かどうかを判定する「適格性判定」、データ入力者の本人性を確認する「なりすまし防止」、ブロックチェーン技術(※19)(特許第6563615号、特許第6245782号、特許第6340494号、特許第6530578号、特許第6245783号、ほか)を用いた「データ改竄耐性」、臨床試験データの欠損を防ぐ「デジタル指導」など、リクルーティングから臨床試験データの解析まで、一貫してデータの真正性を確保するための幅広い機能に関する特許技術を実装しております。
「データ改竄耐性」の機能に関しては実証実験結果を国際医学雑誌上で論文として発表しており(Motohashi et al., 2019, JMIR)、労働集約的になっている実地でのモニタリング業務の代替によって大幅な臨床試験コストの削減を目指しております。
本システムに関しては、共同研究契約を国立がん研究センター中央病院と締結後、乳がん患者に対する運動療法アプリを構築し、2019年5月より臨床研究を開始しております。本臨床研究の実施にあたって採用したシステム構成では、臨床研究データの効率的な信頼性担保を目的としてインフラ部分に上記ブロックチェーン技術を採用しており、経済産業省・厚生労働省の大臣認証を得た上で内閣府の規制のサンドボックス制度(※20)に採択されております。GCP省令(※21)第21条において「1.治験依頼者は、モニタリングに関する手順書を作成し、当該手順書に従ってモニタリングを実施しなければならない。2.前項の規定によりモニタリングを実施する場合には、実施医療機関において実地に行われなければならない。ただし、他の方法により十分にモニタリングを実施することができる場合は、この限りではない。」とされているものの、「他の方法」にどのようなものがあるか、「十分にモニタリングを実施することができる」とはどのような状態か、が不明確な状況でした。当社は、規制のサンドボックス制度の中で①ブロックチェーン技術の実装により当社が構築したシステムを使用して適切な改ざん防止措置が講じられ、②被験者や医療機関(利害関係者でないもの)が入力した情報(原資料等)が直接的に報告データに反映される等の手法を用いることが「十分にモニタリングを実施することができる」場合に該当することを確認し、報告を行いました。この報告を受けて、内閣府が「治験データ等と原資料との一致性が確保できるようブロックチェーン技術を活用するときは、その一致性を確認するための実地でのSDV(Source Data Verification)(※22)が求められないことが治験依頼者等にあらかじめ明らかとなるよう、解釈の明確化その他必要な措置を講じる」ことを成長戦略フォローアップの中で明示しました。サンドボックス制度の研究成果については、国際医学雑誌上で論文として発表しております(Hirano et al., 2020, JMIR)。その後、グレーゾーン解消制度(※23)において、当社システムの利用によって実地での照合作業を省略したとしてもGCP省令第21条に違反するものではないこと、並びにこの解釈が医薬品のみではなく、医療機器や再生医療等製品の治験、特定臨床研究でも適用可能であることの確認を要請し、2020年12月には厚生労働省から、当該システムを利用することで実地での照合を省略することはGCP省令に違反するものではなく(ただし、データを直接連携・同期していない部分についての一致性の確認まで一概に不要とは言えず、データの一致性の確認以外の業務については引き続き適切に実施する必要がある)、また、医薬品以外にも本件の解釈が適用可能であるという回答を得ました。
(臨床試験における業務フローの比較)
2022年6月には、アキュリスファーマ株式会社(本社:東京都港区、代表者:綱場 一成)との間で企業治験としては世界初となるブロックチェーン技術を活用した治験の実施に関する業務委託契約を締結し、本書提出日現在、2件の企業治験が同社において行われております。今後も、アカデミア及び製薬企業を中心とする事業会社を対象に本システムの普及に努め、臨床試験の効率化を目指してまいります。
〔機械学習自動分析システム〕
医療業界で求められているRWDの活用に向けて、Awesome Intelligenceという名称で分析基盤を開発し、クラウドサービス(※24)としての提供を開始しております。既存のAIシステムでは、その判断基準がAI内で学習データと呼ばれる大量のデータに基づいて自律的に構築されるため、システムを操作する人間側には判断基準やその根拠が示されず、ブラックボックス型(※25)になってしまうことが医療分野での利用に際して課題となっております。一方で、当社が開発したAwesome Intelligenceでは、分析結果を導き出す際にシステムが注目した特徴量(※26)の寄与度を明示するようなホワイトボックス型(※27)の機械学習をコアアルゴリズムとすることで、医療分野で求められる判断理由の説明を可能としております。また、データサイエンス領域での経験が十分でない医療関係者でも柔軟に分析が行えるように、データの前処理の自動化や分析結果の出力などにより利便性を高めた仕様としております。当期においても、因果探索基盤技術の開発に関する国立大学法人滋賀大学との共同研究をはじめ、複数の製薬企業や学術研究機関、医療機関において活用されました。
(Awesome Intelligenceの概要)
〔DTx開発支援〕
自社での治療用アプリ開発並びに治療用アプリを対象とした臨床試験実施の経験に基づいて、治療用アプリの開発を目指す企業を支援しております。
治療用アプリを開発するためには、その制作段階において、臨床ニーズの特定から治療アルゴリズムの検討、及びアルゴリズムのアプリケーションへの実装が必要となり、加えて、治療用アプリの制作が完了した後も臨床試験のプロトコル検討、治療用アプリの管理システムの構築、実際の臨床試験の運用までが求められます。アプリケーション開発と臨床開発という異なる専門性をワンストップで提供することで、既にシーズを保有している企業の効率的な治療用アプリ開発を実現しております。
また、治療用アプリの制作においては、患者への介入方法、介入を決定するアルゴリズム、患者データの取得といった複数の機能を汎用的なモジュールとして用意し、それらモジュールの組み合わせだけで迅速にアプリケーションの開発を行うことができるシステム基盤を構築しております。当該システム基盤の活用によってアプリケーションの開発期間が短縮できるため、PoC(※28)取得に要する時間も短縮が可能です。
※1 | ICT | Information and Communication Technology。情報通信技術。 |
※2 | リアルワールドデータ | 調剤レセプトデータ、保険者データ、電子カルテデータなど、臨床現場で得られる診療行為に基づく情報を集めた医療ビッグデータ。 |
※3 | レセプト | 患者が受けた保険診療について、医療機関が保険者に提出する月ごとの診療報酬明細書。患者に対して、どのような診断・検査・治療が行われ、処方された薬剤の内容が記載されている。 |
※4 | MID-NET | Medical Information Database Network。国内の複数の大規模医療機関が保有する電子カルテやレセプト(保険診療の請求明細書)等の電子診療情報をデータベース化して解析するためのシステム。 |
※5 | アンメットメディカルニーズ | まだ有効な治療法が確立されていない疾病に対する、新しい治療薬や治療法への患者、医師からの強い要望。 |
※6 | 認知行動療法 | 個人の認知や行動に働きかけることで病態を改善する治療法。 |
※7 | 運動療法 | 運動を行うことで、障害や疾患の治療を行う治療法。 |
※8 | パイプライン | 研究開発段階にある製品の候補品のこと。 |
※9 | 多剤処方 | 1回の処方で複数種類の薬剤を投与すること。睡眠薬の場合、3種類以上の処方で減算対象となる。 |
※10 | 検証的試験 | 対象となる薬物、医療機器の使用方法、治療方法を決める試験。第三相試験とほぼ同じ意味。 |
※11 | 保険収載 | 健康保険制度の適用対象となり、診療費用の自己負担が3割になること。 |
※12 | MR | Medical Representative(医療情報担当者)。製薬会社などに所属し、医師や薬剤師などの医療関係者に対して自社の医薬品を販売するとともに、その情報を伝える役割を担う。 |
※13 | 予後 | 手術や病気、創傷の回復の見込み。 |
※14 | プロトコル | 臨床試験実施計画書。 |
※15 | QOL | Quality Of Life。治療や療養生活を送る患者さんの肉体的、精神的、社会的、経済的、すべてを含めた生活の質。 |
※16 | 探索的試験 | 検証的試験における用法、用量、試験デザイン、主要評価項目を検討するための試験。第二相試験とほぼ同じ意味。 |
※17 | リクルーティング | 臨床試験において被験者を募集すること。 |
※18 | モニタリング | 医療機関で行われる臨床試験がGCP(Good Clinical Practice、医薬品の臨床試験の実施基準)、治験実施計画書、各種手順書等に基づき、適正に行われていることを調査する業務。 |
※19 | ブロックチェーン技術 | 情報通信ネットワーク上にある端末同士を直接接続して、取引記録を暗号技術を用いて分散的に処理・記録するデータベースの一種。暗号技術の活用により、データの耐改竄性・透明性が実現できるとされている。 |
※20 | 規制のサンドボックス制度 | IoT、ブロックチェーン、ロボット等の新たな技術や、プラットフォーマー型ビジネス、シェアリングエコノミーなどの新しいビジネスモデルの社会実装に向け、規制官庁の認定を受けた実証を行い、その結果を用いて規制の見直しにつなげていく制度。 |
※21 | GCP省令 | 医薬品の臨床試験の実施の基準に関する省令(Good Clinical Practice)。治験を行う製薬企業、病院、医師が遵守しなければならない規則。 |
※22 | SDV(Source Data Verification) | 提出されたデータ(主に症例報告書)を原資料と照合・確認し、データの質を保証するGCP省令等の要請に基づき実施される臨床試験(治験)におけるモニタリング作業の1つ。 |
※23 | グレーゾーン解消制度 | 事業者が現行の規制の適用範囲が不明確な場合においても、安心して新事業活動を行い得るよう、具体的な事業計画に即して、あらかじめ規制の適用の有無を確認できる制度。 |
※24 | クラウドサービス | 従来コンピューター端末にインストールすることで利用していたデータやソフトウェアをネットワーク経由で利用者に提供するサービス。 |
※25 | ブラックボックス型 | AIの判断・分析結果について、その結果に至った根拠が説明不可能なシステム。 |
※26 | 特徴量 | 物事や事象などの特徴が表現されたデータ。 |
※27 | ホワイトボックス型 | AIの判断・分析結果について、その結果に至った根拠が説明可能なシステム。 |
※28 | PoC | Proof Of Concept。新しい技術や理論、原理、手法、アイデアなどに対して、実現可能か、目的の効果や効能が得られるかなどを確認するために実験的に行う検証工程のこと。治療用アプリの開発では、検証的試験の開始前に行われる。 |
このコンテンツは、EDINET閲覧(提出)サイトに掲載された有価証券報告書(文書番号: [E37207] S100RWVF)をもとにシーフル株式会社によって作成された抜粋レポート(以下、本レポート)です。有価証券報告書から該当の情報を取得し、小さい画面の端末でも見られるようソフトウェアで機械的に情報の見栄えを調整しています。ソフトウェアに不具合等がないことを保証しておらず、一部図や表が崩れたり、文字が欠落して表示される場合があります。また、本レポートは、会計の学習に役立つ情報を提供することを目的とするもので、投資活動等を勧誘又は誘引するものではなく、投資等に関するいかなる助言も提供しません。本レポートを投資等の意思決定の目的で使用することは適切ではありません。本レポートを利用して生じたいかなる損害に関しても、弊社は一切の責任を負いません。
ご利用にあたっては、こちらもご覧ください。「ご利用規約」「どんぶり会計β版について」。
ご利用にあたっては、こちらもご覧ください。「ご利用規約」「どんぶり会計β版について」。